
The initial operating capabilities of the Multi-Radar Multi-Sensor quantitative precipitation 

system include an ensemble of quantitative precipitation estimations and associated 

diagnostic products based on radar, gauge, and atmospheric environmental and climatological 

data at 1-km resolution and a 2-min update cycle over the conterminous United States.

MULTI-RADAR MULTI-SENSOR 
(MRMS) QUANTITATIVE 

PRECIPITATION ESTIMATION
Initial Operating Capabilities

by Jian Zhang, Kenneth Howard, Carrie Langston, Brian Kaney, Youcun Qi, Lin Tang, 
Heather Grams, Yadong Wang, Stephen Cocks, Steven Martinaitis, Ami Arthur, Karen Cooper, 

Jeff Brogden, and David Kitzmiller

Over the last two decades, there has been a focus 
on developing new applications and systems 
to address requirements for seamless national 

radar information for use in model data assimila-
tion, transportation, and quantitative precipitation 

estimation, which integrate multiple overlapping ra-
dars with other in situ or remote sensing observations 
and numerical weather prediction (NWP) model out-
put. Advances in computational speed and expanding 
Internet bandwidth facilitated the ability to move 
radar base data from single radars into regional and 
national centers for processing (Droegemeier et al. 
2002; Kelleher et al. 2007).

The Multi-Radar Multi-Sensor (MRMS) system 
recently implemented at the National Centers for En-
vironmental Prediction (NCEP) demonstrated such 
capabilities. MRMS currently integrates about 180 op-
erational radars and creates a seamless 3D radar mosaic 
across the conterminous United States (CONUS) and 
southern Canada at very high spatial (1 km) and tempo-
ral (2 min) resolution. The radar base data are integrated 
with atmospheric environmental data, satellite data, 
and lightning and rain gauge observations to generate 
a suite of severe weather and quantitative precipitation 
estimation (QPE) products. Multiradar integration can 
mitigate deficiencies in the single-radar framework 
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(e.g., “cone of silence”). The integration of radar with 
multisensor data provides more accurate diagnoses of 
physical processes in the atmosphere than using radar 
data alone. For instance, the 3D temperature and mois-
ture field is very helpful in hydrometeor classifications 
and segregation of continental and tropical rain.

MRMS was conceived and built at the National 
Severe Storms Laboratory (NSSL) using components 
from the Warning Decision Support System–Inte-
grated Information (WDSS-II; Lakshmanan et al. 
2007) and National Mosaic and Multi-Sensor QPE 
(NMQ) (Zhang et al. 2011) systems. The MRMS severe 
weather algorithms are derived using WDSS-II, and 
MRMS QPE algorithms are largely based on the NMQ 

QPE components. The fol-
lowing paper provides an 
overview of the initial op-
erating capabilities (IOC) 
of MRMS QPE products. 
An overview of the MRMS 
severe weather products will 
be presented in a separate 
paper (Smith et al. 2016).

MRMS QPE DOMAIN. 
The MRMS CONUS do-
main covers an area with 
latitude bounds of 20° and 
55°N and longitude bounds 
of 130° and 60°W (Fig. 1). 
The MRMS grid has a hori-
zontal resolution of 0.01° in 
both latitude and longitude 
directions, which is equiva-
lent to about 1.11 km in 
the north–south direction 
throughout the domain. In 
the west–east direction, the 
grid resolution varies from 
about 1 km at the southern 
bound to about 0.6 km at 
the northern bound.

MRMS QPE INPUT 
DATA. Radar. MRMS in-
gests 3D volume scan data 
from about 146 S-band 
dual-polarization Weather 
Surveillance Radar-1988 
Doppler (WSR-88D) radars 
and about 30 C-band single-
polarization weather radars 
operated by Environment 

Canada (Fig. 1a). The volume scan duration from these 
networks ranges from 3 to 10 min. A dual-polarization 
radar quality control (dpQC; Tang et al. 2014) is ap-
plied to WSR-88D data to remove nonhydrometeor 
echoes. The dpQC uses a simple correlation coefficient 
(ρHV) filter that separates hydrometeor (high ρHV; 
Fig. 2) and nonhydrometeor (low ρHV; Fig. 2) areas 
and a set of heuristic rules that handles exceptions 
to the simple ρHV filter. Such exceptions include areas 
of hail, nonuniform beamfilling (NBF), and melting 
layer (ML) that have low ρHV values. Another exception 
is random clutter and biological pixels with high ρHV 
values. The dpQC uses 3D reflectivity structure and 
environmental data to protect hail, NBF, and ML areas 

Fig. 1. MRMS domain and locations of the (a) radar and (b) rain gauge sites. 
In (a), the blue dots indicate the U.S. WSR-88D radar sites, the maroon dots 
indicate the Canadian radar sites, and the brown circles are the 250-km range 
rings. The white plus signs in (b) indicate locations of the hourly gauges.
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from being removed by the 
simple ρHV filter, and it uses 
spatial filters and vertical 
and horizontal consistency 
checks to remove random 
nonprecipitation pixels that 
exhibit high ρHV values. 
The dpQC removes more 
than 99% of nonhydrome-
teor echoes with very high 
computational efficiency 
(Tang et al. 2014). Wind 
farms (WF), anomalous 
propagation (AP) ground 
clutter, and deep biological 
echoes (“blooms”; Figs. 3a 
and 3c) were major chal-
lenges for the single-polar-
ization radar QC, but those 
nonhydrometeor echoes are 
remarkably reduced in the dpQC (Figs. 3b and 3d). 
The WF and AP embedded in precipitation remain an 
issue and a WF mitigation scheme is currently under 
development. The WF locations are manually tabu-
lated from available WF databases (e.g., Diffendorfer 
et al. 2014) and are based on “hot spots” in precipita-
tion accumulations, and an aggressive dpQC will 
apply in the vicinity of WF. The WF mitigation is 
planned for implementation in the operational MRMS 
system later in 2016. It is noted that because of the 
hybrid polarization scheme, the horizontally polarized 
transmit power of WSR-88D radars is about 3 dB lower 
than it was before the polarimetric upgrade. Therefore, 
the radar may have less detection of light precipitation 
and snow than before, especially at long ranges.

The Canadian radar data used in MRMS are the 
full 3D volume scan (“CONVOL”) base-level data that 
contain 24 tilts with the lowest elevation angles rang-
ing from −0.5° to 0.3° and the highest at about 24.6°. 
Since the CONVOL dataset does not contain velocity 
and spectrum data, its quality control is mostly based 
on reflectivity structure. Two main processes are ap-
plied to remove nonprecipitation echoes: 1) a neural 
network–based reflectivity quality control (QC) with 
a static clutter map filter to remove persistent ground 
clutter (Lakshmanan et al. 2012) and 2) a heuristic 
rule-based AP removal using reflectivity intensity, 
echo depth, vertical gradient, and horizontal tex-
ture. Because of the low elevation angles, significant 
normal or AP ground clutter occurs in Canadian 
radar observations. Current QC measures remove 
persistent ground clutter and AP in clear air relatively 
effectively (Fig. 4). However, AP at far ranges and AP 

embedded in precipitation remain a challenge owing 
to limited single-polarization radar information. 
Attenuation is another potential issue with Canadian 
radar data given their 5-cm wavelength. Currently no 
attenuation correction is applied in MRMS. Despite 
the remaining AP and attenuation issues, Canadian 
radar data are included in the MRMS products since 
they provide valuable information about distributions 
of storms and precipitation along the U.S.–Canada 
border. Such information is important for aviation 
and hydrological communities. There is a plan to 
begin upgrading the Canadian radar network with 
polarimetric capabilities in the next couple of years 
(P. Joe, Environment Canada, 2015, personal commu-
nication), and mitigations of AP and attenuation are 
expected to improve significantly with the upgrade.

Gauge. MRMS ingests approximately 7,000 hourly 
rain gauges from the Hydrometeorological Auto-
mated Data System (HADS; www.nws.noaa.gov/oh 
/hads/) (Fig. 1b). Gauge data are the only operational 
in situ measurements of precipitation and are used to 
correct radar QPE biases in MRMS. However, gauge 
data are subject to many error sources that have been 
documented for decades (e.g., Parsons 1941; Larson 
and Peck 1974; Essery and Wilcock 1991; Groisman 
and Legates 1994; Sevruk 2005; Sieck et al. 2007; 
Rasmussen et al. 2012) and quality control of the 
data is necessary.

The hourly HADS gauges used in MRMS are 
quality controlled through an automated scheme that 
compares each gauge report with collocated hourly 
radar QPE values. Five types of suspicious gauges 

Fig. 2. (a) Base reflectivity and (b) correlation coefficient fields from the 
KMVX radar 0.5° tilt valid at 0800 UTC 19 May 2014. White circles are range 
rings at 50-km intervals, and white lines indicate azimuths every 45°. The 
white arrows indicate an area of precipitation to the northwest and an area 
of bird and insect echoes around the radar. The two areas have very similar 
reflectivity features as shown in (a) but distinctively different correlation 
coefficients as shown in (b).
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are identified, which are “frozen,” “false zero,” “false 
precipitation,” “outlier too high,” and “outlier too low.” 
The majority of the HADS gauges is tipping-bucket 
type and was found to be incapable of measuring 
frozen precipitation properly even when heated (e.g., 
Rasmussen et al. 2012). Therefore, gauges that report 
zero precipitation while the collocated radar QPE is 
greater than zero are labeled “frozen” when the sur-
face wet-bulb temperature (WBT) is at or below 0°C. 
Further, all gauge data that report nonzero precipita-
tion when WBT ≤ 0°C are also considered unreliable 
and are labeled “frozen” to avoid reports of partially 
melted frozen precipitation. A false-zero gauge is 
identified when a zero gauge report is collocated with 
a nonzero radar QPE, and a false-precipitation gauge 
is identified when the opposite occurs. This check 

effectively identifies “stuck” gauges that report con-
stant zero and gauges that report false precipitation 
in a clear-air environment, such as unheated gauges 
reporting precipitation from thawing snow after the 
precipitation has ended. Outlier-too-high and outlier-
too-low gauges are identified when the reports are 
outside a predefined range around the hourly radar 
QPE. The range is from 0.045R1.45 to 1.0 + 6.4R0.725 
[where R is the hourly radar QPE (in mm)] and retains 
about 95.8% of the good data and removes about 74% 
of the bad data based on a test with several thousands 
of manually quality-controlled data. In areas with poor 
radar coverage, a sanity check flags any hourly gauge 
report greater than 2 in. (50.8 mm) as suspicious. The 
current gauge QC does not contain spatial and tempo-
ral consistency checks but such schemes are evaluated 

Fig. 3. (a),(b) Mosaicked composite reflectivity fields at 0000 UTC 22 Oct 2013 across the east-central United 
States. (c),(d) The 72-h radar QPE accumulations along the Oklahoma–Kansas border ending at 1200 UTC 22 
Dec 2012 and 27 Nov 2013, respectively. The fields in (a) and (c) are from single-polarization radar reflectivity 
QC, and the fields in (b) and (d) are from dpQC. The red circles indicate biological echoes in (a) and WF in (c).
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for various precipitation events and may be included in 
future updates. Nevertheless, the gauge QC provides a 
way to process large datasets and to remove significant-
ly bad gauges effectively. The quality-controlled gauge 
data are used in the MRMS local gauge bias-corrected 
radar QPE that will be presented later in the paper.

NWP model data. Hourly analyses from the Rapid 
Refresh (RAP; http://rapidrefresh.noaa.gov) model 
have been used extensively in MRMS. For instance, 

the RAP freezing-level height is used in the dpQC to 
help delineate areas of melting layer. Surface tempera-
ture and wet-bulb temperature are used to delineate 
areas of snow and rain. The RAP 3D temperature, 
wind, and relative humidity fields provide informa-
tion about different atmospheric environments that 
may or may not be favorable for enhanced precipita-
tion rates. High-Resolution Rapid Refresh (HRRR; 
http://ruc.noaa.gov/hrrr/) model data are planned to 
replace RAP as inputs to MRMS by the end of 2016.

Fig. 4. Base reflectivity at 0.5° tilt (a),(c) before and (b),(d) after the Canadian radar QC process. The fields 
were observed from (a),(b) XBU radar (Schuler, Alberta, Canada) valid at 1309:38 UTC and (c),(d) XSS radar 
(Silver Star Mountain, British Columbia, Canada) at 1259:17 UTC 3 Jun 2014.
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Precipitation climatology. A special dataset of monthly 
precipitation climatology is utilized in MRMS for a 
gauge-and-climatology-merged QPE called “Moun-
tain Mapper” (Schaake et al. 2004). The climatology 
is from the Parameter-Elevation Regressions on Inde-
pendent Slopes Model (PRISM; Daly et al. 2008, 1994; 
www.prism.oregonstate.edu), which is derived using 
30 years of gauge observations, atmospheric environ-
mental data, and terrain elevation information. The 
PRISM monthly climatology captures the orographic 
forcing of precipitation in complex terrain and can 
provide a high-resolution background precipitation 
distribution when radar coverage is poor (e.g., in the 
Intermountain West; Maddox et al. 2002). PRISM has 
been used in several River Forecast Centers (RFCs) 
in the west for their operational precipitation esti-
mation and river flow forecasts. The same process is 
adopted in MRMS to generate a CONUS Mountain 
Mapper QPE.

MRMS QPE PRODUCTS. MRMS currently pro-
vides four types of QPE products: 1) radar-based QPE, 
2) gauge-based QPE, 3) local gauge bias-corrected 

radar QPE, and 4) gauge-and-precipitation-clima-
tology-merged QPE. Each QPE includes a suite of 
accumulations ranging from 1 to 72 h. The QPE 
products are generated operationally at NCEP and 
disseminated to the National Weather Service (NWS) 
regional and local forecast offices as well as external 
users and agencies. For instance, MRMS radar–based 
QPE products have been used by several RFCs in the 
eastern United States to create their operational river 
flow predictions. Table 1 summarizes the key QPE 
products in MRMS and the rest of the paper provides 
brief descriptions of each product.

Seamless hybrid scan ref lectivity and the associated 
height. Radar QPEs are usually derived from the 
lowest radar bins that are not severely blocked. 
Reflectivity data from those radar bins constitutes 
the so-called hybrid scan ref lectivity (HSR) (e.g., 
Fulton et al. 1998), and it forms the basis for the radar 
precipitation estimation and for extrapolation to the 
ground. The standard hybrid scan is constructed 
based on terrain data assuming radar beam propaga-
tion in standard atmosphere. The QPEs derived from 

Table 1. List of key MRMS precipitation products.

ID Unit Update cycle Description

SHSR dBZ 2 min SHSR

SHSRH km AGL 2 min Height of SHSR

RQI — 2 min RQI

POWR — 1 h Probability of warm rain

PCP_FLAG — 2 min Surface precipitation type

PCP_RATE mm h-1 2 min Surface precipitation rate

Q3RAD_SHSR_1H mm 2 min Radar-based 1-h precipitation accumulations

Q3RAD_SHSR_3  
(6, 12, 24)H mm 1 h

Radar-based 3 (6, 12, 24)-h precipitation 
accumulations

Q3RAD_SHSR_48  
(72)H mm Daily at 1200 UTC

Radar-based 48 (72)-h precipitation 
accumulations

Q3GC_SHSR_1  
(3, 6, 12, 24)H mm 1 h

1 (3, 6, 12, 24)-h local gauge bias-corrected 
radar precipitation accumulations

Q3GC_SHSR_48  
(72)H mm Daily at 1200 UTC

48 (72)-h local gauge bias-corrected radar 
precipitation accumulations

GII — 1 h GII

Q3GAUGE_1  
(3, 6, 12, 24)H mm 1 h

1 (3, 6, 12, 24)-h gauge-based precipitation 
accumulations

Q3GAUGE_48  
(72)H mm Daily at 1200 UTC

48 (72)-h gauge-based precipitation 
accumulations

Q3MM_1  
(3, 6, 12, 24)H mm 1 h

1 (3, 6, 12, 24)-h Mountain Mapper 
precipitation accumulations

Q3MM_48 (72)H mm Daily at 1200 UTC
48 (72)-h Mountain Mapper precipitation 
accumulations
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standard HSR often exhibit discontinuities from 
blockages not accounted for in the terrain data (e.g., 
those from man-made towers and growing trees). In 
MRMS, such gaps are identified from precipitation 
accumulation maps (Tang et al. 2013) and a linear 
cross-azimuth interpolation is applied to fill in small 
gaps (e.g., Fig. 5b vs Fig. 5a). Large gaps (≥5°) are 
filled with data from the next upper tilt (Fig. 5d vs 
Fig. 5c). The resultant HSR field is called “seamless” 
HSR (SHSR).

An apparent vertical profile of reflectivity (AVPR) 
correction (Zhang and Qi 2010; Zhang et al. 2012b; Qi 
et al. 2013a,b) is applied in the SHSR field to mitigate 
radar QPE overestimation errors in the “bright band” 
(BB) zone, where radar beams intersect the melting 
layer. AVPR refers to a radial profile of azimuthal 
mean reflectivities in stratiform rain areas in a given 
tilt where the radar beam is potentially intersecting 
or overshooting a melting layer. Assuming that the 
vertical structure of precipitation is horizontally 
uniform in the stratiform rain, the AVPR represents 
the vertical variation of reflectivity manifested by 

the beam broadening effect (thus the term “appar-
ent” VPR). Example AVPRs from KLWX (Sterling, 
Virigina) observations during Hurricane Sandy are 
shown in Fig. 6. Each AVPR of a given tilt is fitted 
with a three-piece (i.e., above BB top, BB top to peak, 
and BB peak to bottom) linear model. Assuming the 
precipitation rate below the BB bottom is constant, 
the linear AVPRs show that reflectivities in (above) 
the BB are higher (lower) than the reflectivity at the 
BB bottom (Fig. 6) and would result in overestima-
tion (underestimation) errors if the ref lectivities 
were used in the radar QPE without any correction. 
Figure 7 shows example 24-h radar QPEs from KLWX 
before and after the AVPR correction during Hur-
ricane Sandy. The overestimation is apparent in an 
area west of the radar (blue circles in Fig. 7b), which 
resulted in a high Q/G ratio (1.75) when compared 
to gauge observations, where Q represents the radar 
QPE amount and G represents the gauge-observed 
amount. After the correction, the ratio was reduced 
to 1.07 and the root-mean-square error was reduced 
by about 58% (Fig. 7c vs Fig. 7f).

Fig. 5. Example QPE accumulation fields (a),(c) without the nonstandard blockage mitigation and (b),(d) with 
the mitigation. White arrows indicate areas of discontinuities due to blockages from cellphone and water tow-
ers in (a) and growing trees in (c).
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The current AVPR correction does not work when 
the surface temperature is below 0°C because a refer-
ence level (BB bottom) would not be found. A clima-
tological vertical profile of reflectivity (VPR)-based 
correction scheme similar to Koistinen and Pohjola 
(2014) is currently under development for enhancing 
the radar QPE in snow. Further, the correction usu-
ally works better on flat land than on complex terrain 
since the two assumptions (horizontal uniformity of 
vertical precipitation structure and invariant pre-
cipitation rate below BB bottom) are often violated in 
complex terrain, where orographic forcing modulates 
precipitation distributions (Zhang et al. 2012b).

The AVPR-corrected SHSR is derived from a single 
radar and then mosaicked onto the MRMS CONUS 
grid. Ideally, taking the lowest altitude datum among 
the multiple radars covering the same point would 
provide the most accurate surface precipitation 
rate estimate for the given point. However, such an 
approach inevitably introduces discontinuities in 
the QPE field midway between neighboring radars. 
The discontinuities may be due to different calibra-
tion biases among the radars and/or different beam 
propagation paths from the radars to the overlapping 
point. In MRMS, if the lowest (in altitude) SHSR 
datum shows no precipitation, then the mosaicked 
SHSR is set to no precipitation. This logic minimizes 
false precipitation introduced by radar observations 
of virga. Otherwise, the overlapping SHSR data are 

grouped into “liquid,” “mixed,” and “ice” categories 
according to their heights with respect to the melting 
layer. If valid data are found in a lower-altitude group, 
then a weighted mean of those data are taken and the 
higher-altitude groups are ignored. This approach 
prevents usage of higher-altitude data in the SHSR 
mosaic when the lower-altitude data are available and 
allows a smooth transition across equidistant zones 
between neighboring radars. The mosaicking weight 
wm is a product of two negative exponential func-
tions—that is, wm = exp(−d2/L2)exp(−h2/H2), where 
d is the distance between the analysis point and the 
radar and h is the height of the single-radar SHSR bin; 
L and H are scaling factors with the default values of 
100 and 2 km, respectively.

Seamless hybrid scan reflectivity height (SHSRH) 
product is the beam bottom height associated with 
SHSR data and is mosaicked onto the CONUS grid 
using the same logic as for SHSR. This field shows at 
every radar QPE grid point the height of radar obser-
vation from which the QPE is derived. Example SHSR 
and SHSRH fields from southeastern Oklahoma are 
shown in Fig. 8. A higher SHSRH area can be found 
south of the KSRX radar (Little Rock, Arkansas) 
(Fig. 8b), where the first tilt of KSRX was severely 
blocked and the second tilt was used in the hybrid 
scan. Generally, the higher the SHSRH, the lower 
the surface radar QPE accuracy as a result of various 
microphysical processes (e.g., melting, evaporation, 

Fig. 6. AVPRs from KLWX radar at 1000 UTC 29 Oct 2012. Black curves represent radial profiles of azimuthal-
mean reflectivities in stratiform precipitation areas on different tilts [pink numbers indicate elevation angles 
(°)], and red lines are the linear-fitting AVPRs. Black dashed line shows 0°C height at the radar site, which was 
obtained from the RAP model analysis. The ordinate is height (km) above radar level (ARL).
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orographic precipitation en-
hancement) that could pres-
ent below the hybrid scan. 
The SHSRH is a main con-
tributing factor in the radar 
QPE quality index product 
that will be discussed next. 
SHSR and SHSRH are new 
national MRMS products 
and can provide useful in-
formation for meteorologi-
cal and hydrological appli-
cations. For instance, the 
SHSR product has been used 
in a probabilistic QPE study 
recently (Kirstetter et al. 
2015) that analyzed statisti-
cal relationships between 
the SHSR and surface gauge 
observations and generated 
different probabilistic QPE 
models for different precipi-
tation types.

RQI. Radar QPEs are subject 
to various error sources, 
including 1) errors in radar 
measurements, for exam-
ple, calibration biases and 
blockages; 2) contamina-
tions from nonprecipitation 
echoes, for example, AP; 3) 
uncertainties in empirical 
relations between precipi-
tation rate R and various 
radar variables (e.g., reflec-
tivity Z); and 4) variabil-
ity in the VPR. Radar QPE 
quality index (RQI) has 
two multiplicative compo-
nents, one is associated with 
beam blockages (error 1) and the another with beam 
spreading/ascending with range (error 4). The RQI 
blockage component has a value of one when there is 
no blockage and the value linearly decreases to zero 
when the beam blockage reaches a threshold (default 
= 50%). The range component has a value of one when 
the SHSR radar beam is completely below the melt-
ing layer. The value begins decreasing exponentially 
with radar beam height when the beam intersects the 
melting layer. The RQI showed good correlations with 
radar QPE errors (e.g., Zhang et al. 2012a; Chen et al. 
2013) because it partially models range-dependent 

uncertainties in the radar QPE. However, RQI does 
not represent radar QPE uncertainties associated 
with spatially varying drop size distributions (er-
ror 3). Figure 9 shows an example RQI field where 
beam blockages and large distances between neigh-
boring radars resulted in a low RQI (black dashed 
line, Fig. 9a). The 24-h radar QPE had a significant 
underestimation in the low RQI region. Meanwhile, 
some overestimation (area A) and underestimation 
(area B) were not reflected in RQI and may be due to 
other error factors not represented by the RQI (e.g., 
inaccurate R–Z relationships).

Fig. 7. Daily MRMS radar QPE maps (a) before and (d) after the AVPR correc-
tion. Bias ratios of the (b) QPEs vs (e) gauge observations are shown as the 
bubble charts. The size of the bubbles represents the gauge amounts, and the 
color represents the QPE bias (pink and red shadings indicate underestima-
tion, and blue and purple shadings indicate overestimation). The associated 
scatterplots of the (c) QPEs vs (f) gauge data are also shown.
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because the input data are in 
radar’s native coordinates) 
is examined and a negative 
slope below the bright band 
would indicate tropical rain 
existence in the radar do-
main. For each radar volume 
scan with a positive tropical 
rain identification, all pixels 
within a predefined radius 
(default = 120 km) are identi-
fied as tropical rain if seam-
less hybrid scan reflectivity 
is relatively high (≥25 dBZ), 
surface temperature is warm 

(≥10°C), and the probability of warm rain (POWR; 
Grams et al. 2014) is high (≥0.5). POWR was derived us-
ing decision trees based on a number of environmental 
predictors from the model analysis and is an indicator 
of the likelihood of enhanced precipitation rates as a 
result of the collision–coalescence process in an environ-
ment with a high freezing level and abundant moisture 
(Grams et al. 2014). The key predictors in the decision 
trees included 850–500-hPa temperature lapse rate, 
height of the freezing level, and 1000–700-hPa mean 
relative humidity. The POWR values range from 0 (low) 
to 1 (high) with high values corresponding to a moist 
adiabatic profile (i.e., weak lapse rate supporting weak 
updrafts), a high freezing level (deep warm layer for 
warm raindrop growth), and abundant low- to midlevel 
moisture (reduced evaporation of hydrometeors and/or 
low cloud bases). The tropical rain area is then expanded 
outside the predefined radius under the constraint of 
SHSR ≥ 25 dBZ and POWR ≥ 0.5. Figure 11 shows an ex-
ample surface precipitation type field valid at 2100 UTC 

Fig. 8. Example (a) SHSR and (b) SHSRH fields valid at 1000 UTC 10 Mar 2015.

Fig. 9. Example RQI at (a) 0000 UTC 10 Mar 2015 and (b) a 24-h MRMS radar-
only QPE accumulation ending at 0000 UTC 10 Mar 2015. In (b), the size of 
the solid circles represents the gauge-observed amounts, and the color of the 
circles represents the QPE/gauge bias ratio (red and pink shadings indicate 
underestimation, and blue and purple shadings indicate overestimation). The 
black dashed line indicates an area of low RQI.

Surface precipitation type (PCP_FLAG). Radar variables 
are indirect measurements of precipitation rates R and 
empirical relationships have to be developed for radar 
QPE. Different empirical relationships are needed for 
different precipitation phases and regimes, and an au-
tomated surface precipitation classification is employed 
in MRMS such that appropriate relationships may be 
applied. Figure 10 shows the MRMS surface precipita-
tion classification process with seven categories (purple 
parallelograms in Fig. 10): 1) warm stratiform rain, 2) 
cool stratiform rain, 3) convective rain, 4) tropical–
stratiform rain mix, 5) tropical–convective rain mix, 
6) hail, and 7) snow. Snow areas are defined as where 
the surface temperature is below 2°C and the wet-bulb 
temperature is below 0°C. Areas with potential hail are 
determined by the maximum expected hail size, which 
is an MRMS severe weather product. Convective rain 
areas are identified through two steps: 1) the convective 
cores are identified based on high vertically integrated 
liquid (VIL, which is also an MRMS severe weather 
product) values and 2) the 
cores are then expanded 
with a composite reflectivity 
(CREF) criterion to obtain 
convective rain regions. A 
couple of constraints are ap-
plied during the convective 
core identification to avoid 
potential brightband areas.

Tropical rain identifica-
tion is based on the meth-
odology developed by Xu 
et al. (2008). For volume scan, 
a mean VPR is computed 
from full volume-scan re-
flectivity data near the ra-
dar (20–80-km range). The 
VPR (called “polar VPR” 
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21 December 2013, overlaid 
with surface observations 
from a crowdsource applica-
tion called “the Meteorologi-
cal Phenomena Identification 
Near the Ground” (mPING; 
Elmore et al. 2014). The snow 
line in the precipitation type 
field agreed well with the 
liquid–frozen precipitation 
boundary in mPING.

Surface precipitation rate 
(PCP_RATE) and radar-only 
QPE (“Q3RAD”) accumu-
lations .  The MRMS sur-
face precipitation rate is 
currently calculated using 
multiple R–Z relationships. 
Polarimetric variables are 
not used because various 
polarimetric radar QPE 
schemes are still under 
evaluation across CONUS 
and an optimal approach 
for all seasons and all geographic regions has yet to be 
developed. The following empirical R–Z relationships 
are used in MRMS to compute surface precipitation 
rate for each precipitation type:

	 warm and cold stratiform rain:

	 Rstra = max (0.0365Z0.625,0.1155Z0.5);	 (1)

	 convective rain and hail:

	 Rconv = 0.017Z0.714;	 (2)

	 snow:

	 Rsnow = 0.1155Z0.5.	 (3)

Here, Z represents the radar reflectivity (mm6 m−3) 
and R represents rain rate [Eqs. (1) and (2)] or snow 
water equivalent [Eq. (3)] (mm h−1).

The two stratiform categories currently use the 
same combination of two R–Z relationships. However, 
a study similar to Kirstetter et al. (2015) is underway 
to assess variations of the R–Z relationship for the 
seven precipitation categories and new relation-
ships may be developed. The categories are kept 
separate for potential R–Z scheme changes and/or 
the application of polarimetric radar QPE schemes 

Fig. 10. The surface-precipitation-type classification process in the MRMS 
system. Underlined red fonts represent adaptable parameters in the clas-
sification algorithm.

in the future. The stratiform rain rates are currently 
capped at 48.6 mm h−1, the convective rain is capped 
at 103.8 mm h−1, and hail is capped at 53.8 mm h−1.

The tropical–stratiform mixed rain rate Rtsmix is 
calculated as follows:

	 Rtsmix = αwtropRtrop + (1 – wtrop)Rtrop	 (4)

	                                                                     .	 (5)

	

Here, Rstra represents a stratiform rain rate computed 
from Eq. (1), Rtrop= 0.010Z0.833 represents a tropical 
rain rate (capped at 147.4 mm h−1), wtrop is the weight 
given to the tropical rain rate, and p1 and p2 are adapt-
able POWR thresholds (default values are p1 = 0.5 and 
p2 = 0.7 for June–November and p1 = 0.75 and p2 = 1.0 
for December–May). The tropical rain-rate multiplier 
α is defined as follows:

	                                                                           ,	 (6)
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where αmax varies from 1.1 to 1.5 during the hurricane 
season (June–November) and stays at 1.0 otherwise. 
Terms p3 and p4 are also adaptive parameters with 
default values of p3 = 0.7 and p4 = 1.0 for June–No-
vember and p3 = 1.0 and p4 = 1.0 for December–May. 
The tropical–convective mixed rain rate Rtcmix is 
calculated in the same way as in Eq. (4), except that 
Rstra is replaced by Rconv.

Note that Eqs. (4)–(6) are used for tropical–strati-
form and tropical–convective rain rates in areas east 
of 100°W longitude, because the POWR was derived 
using data from only the eastern United States. The 
rates are simply set to Rtrop west of 102°W. In the 
transition zone of 102°–100°W, a linear ramping of 
the two rates (i.e., Rtrop and Rtsmix, or Rtrop and Rtcmix) 
is applied to assure the continuity of the rate field. 
This scheme will undergo updating when a new 
POWR product becomes available for the western 
United States.

The rate field is calculated every 2 min and an 
hourly accumulation is computed every 2 min by ag-
gregating the rate fields. Longer-term accumulations 
are then derived from the hourly accumulations at 
different update cycles (Table 1). It is noted that “skip-
ping” patterns are sometimes observed in radar pre-
cipitation accumulation fields for fast-moving storms 
because of discrete temporal sampling of the storms by 
the radar. Such a pattern is more apparent in products 
with finer spatial resolution than those with coarser 
resolution owing to the spatial smoothing effects in 
the latter. Also, the patterns may be more apparent 
in single radar than in multiradar mosaic products 
because of additional observations in the latter.

Figure 12 shows CONUS mean absolute errors 
(MAEs) of daily MRMS radar–only QPE (blue line) 
and the NCEP stage-II (SII; Lin and Mitchell 2005) 
radar–only QPE (green line) with respect to the Com-
munity Collaborative Rain, Hail and Snow Network 
(CoCoRaHS: www.cocorahs.org/; Cifelli et al. 2005) 
gauges. Stage-II radar–only QPE is a national mosaic 
of the NWS operational single-polarization radar 
QPE (Fulton et al. 1998). Stage-II radar–only QPE 
uses one R–Z relationship for each radar domain. 
Different R–Z relationships may be used for different 
radars and the choice of using a single R–Z relation-
ship for each radar is set at the local forecast office 
level. The MRMS radar–only QPE showed consistent 
improvements over SII radar–only QPE throughout 
the year, likely because of impacts of several factors: 1) 
dual-polarization (MRMS) versus single-polarization 
(SII) reflectivity quality control, 2) spatially varying 
R–Z relationships based on precipitation classifica-
tion (MRMS) versus a single R–Z relationship in a 

radar domain (SII), 3) a VPR correction to mitigate 
radar QPE errors in bright band (MRMS) versus no 
VPR correction (SII), and 4) a conditional mosaick-
ing scheme using negative exponential weighting 
functions of distance and height (MRMS) versus an 
inverse-distance-weighted mean mosaicking scheme 
(SII; www.emc.ncep.noaa.gov/mmb/ylin/pcpanl 
/QandA/#INTROST2). The MRMS radar QPE had 
relatively large MAEs during June–October 2014 
(Fig. 12) when compared to the CoCoRaHS gauges 
and the large errors were related to a wet bias in the 
MRMS QPE. The wet bias was partially due to inac-
curate classifications of tropical rain areas in some 
continental convective systems, where the radar 
vertical profile of ref lectivity and POWR showed 
characteristics similar to those in tropical storms. 
Other contributing factors included evaporation and 
advection of hydrometeors as they fall from the radar 
observation height to the ground and possibly gauge 
undercatch in severe storms with high winds.

Local gauge bias-corrected radar QPE (“Q3GC”), gauge-
only QPE, and gauge-influence index (GII). Radar QPE 
provides a high-resolution and rapid update estima-
tion of spatial precipitation distributions. However, 
uncertainties exist in the estimates because of imper-
fect empirical relationships between radar variables 
and precipitation rate and unknown processes below 
the lowest radar beam. Quality-controlled gauge ob-
servations provide direct and relatively more accurate 
estimates of precipitation amounts on the ground. 
A local gauge bias correction is made to the MRMS 
radar QPE to obtain a more accurate QPE, although at 
a latency (~1.5 h) because of the gauge data availability 
in real time. The local gauge bias correction is based 
on a method by Ware (2005) and involves three steps: 
1) hourly radar–gauge differences are calculated at 
gauge stations, 2) the differences are interpolated onto 
the MRMS grid via an inverse-distance-weighted 
mean scheme, and 3) the interpolated difference field 
is subtracted from the hourly radar QPE field. The 
interpolation weight is in the form of w = 1/rx, where w 
is the weight and r is the distance between a gauge and 
an MRMS grid point. Brandes (1975) used a negative 
exponential function in a similar study. The exponent 
x in the current scheme varies from 0.5 to 3 and is 
determined through cross validation that minimizes 
the interpolation error of radar–gauge differences in 
a specific domain each hour. The CONUS is divided 
into multiple subdomains (“tiles”) and the cross 
validation and local gauge correction of the radar 
QPE are performed for each tile. The corrected radar 
QPEs from all tiles at a given hour are then merged to 
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produce the final CONUS 
product.

The local gauge bias cor-
rection provided consis-
tent improvements over the 
radar-only QPE throughout 
the year across the CONUS 
domain (Fig. 12). It is most 
effective in removing radar 
QPE errors that are spa-
tially consistent since the 
interpolation weight is de-
termined through the cross 
validation over a spatial 
domain. In the cool sea-
son (October–April) where 
precipitation is relatively 
widespread and homoge-
neous, the gauge-corrected 
radar QPE showed similar 
performances as the stage-
IV product (Fig. 12), which 
was a radar-, satellite-, gauge-, and PRISM-merged 
product generated by forecasters at RFCs with manual 
quality assurance. In the warm season (May–Septem-
ber), however, the MRMS gauge-corrected radar QPE 
still had larger errors than the stage-IV product (Fig. 
12) when compared with CoCoRaHS gauges. The 
radar–gauge difference in the warm season varies 
significantly in space owing to a number of factors 
in convective storms, such as a high variability of 
drop size distributions, hydrometeor drifting and 
evaporation before reaching the ground, and gauge 
undercatch. The interpolated radar–gauge difference 
may not be representative of the radar QPE errors in 
areas away from the input gauges. Therefore, signifi-
cant differences may still exist between the gauge-
corrected radar QPE and the independent validation 
gauges. Also note that some of the CoCoRaHS gauges 
may have been used in stage IV but they are not used 
in the MRMS products.

The summation of weights from all gauges in-
f luencing a given grid point, normalized by the 
maximum value in the domain, is defined as the GII 
product. The same interpolation scheme was used 
to interpolate hourly gauge data to generate a gauge-
only QPE. The hourly gauge-only and local gauge 
bias-corrected radar QPEs are aggregated to generate 
their longer-term accumulations.

Mountain Mapper QPE (“Q3MM”). Radar QPE quality 
in the Intermountain West suffers from severe terrain 
blockages. As a result, the RFCs in the west have been 

using an alternative QPE called Mountain Mapper 
(Schaake et al. 2004). The same process is adopted 
in MRMS to generate a CONUS Mountain Mapper 
QPE. Mountain Mapper uses the PRISM monthly 
climatology as a background precipitation distribu-
tion map. Ratios between quality-controlled hourly 
gauge observations and collocated PRISM climatol-
ogy values are calculated at each gauge station and 
the ratios are interpolated onto the MRMS grid using 
an inverse distance weighted mean (w = 1/r2). The 
MRMS Mountain Mapper QPE was found to provide 
consistent improvement over the MRMS radar QPE 
in the west and was applied in a multisensor-merged 
QPE (Zhang et al. 2014). A new multisensor-merged 
QPE using Mountain Mapper and the local gauge 
bias-corrected radar QPE is currently under evalua-
tion and is planned for operational implementation 
in 2016.

SUMMARY AND FUTURE WORK. This paper 
provides an overview of the Multi-Radar Multi-
Sensor (MRMS) system and its initial operating 
capabilities of quantitative precipitation estimation 
(QPE) products. MRMS was developed using severe 
weather product components from the Warning 
Decision Support System–Integrated Information 
(WDSS-II) and using QPE product components 
from the National Mosaic and Multi-Sensor QPE 
(NMQ) system. The system was transitioned into 
operations at the National Centers for Environmental 
Prediction in September 2014. It currently integrates 

Fig. 11. MRMS surface-precipitation-type product valid at 2100 UTC 21 Dec 
2013. Surface observations of precipitation types from mPING are overlaid.
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Fig. 12. MAEs (left ordinate) of four QPE products with respect to CoCoRaHS 
gauge observations over the CONUS domain. The QPEs are 24-h accumula-
tions ending at 1200 on each day for 2014. The black dots are domain-averaged 
daily precipitation observations from CoCoRaHS gauges (right ordinate).

data from about 180 radars, about 7,000 gauges, and 
atmospheric environmental data in CONUS and 
southern Canada, and provides a suite of severe 
weather and QPE products at 1-km resolution and on 
a 2-min update cycle. Traditionally, operational radar 
products are generated at single-radar sites and then 
disseminated to regional or national centers. MRMS 
is a new paradigm in that the base-level data from 
all radars in a network are collected and processed 
at a centralized location. Such a process allows for 
easy integration of multisensor data and provides 
enhanced QPE products. Further, MRMS provides 
many new high-resolution national products, such 
as the 3D reflectivity mosaic, seamless hybrid scan 
reflectivity and associated height, and surface pre-
cipitation rate and type. These products have found 
many applications in the aviation, meteorological, 
and hydrological communities.

The MRMS surface precipitation rate is currently 
calculated using multiple R–Z relationships based 
on an automated surface precipitation classification. 
While the MRMS radar QPE showed consistent 
improvements over single R–Z-based radar QPEs 
over the CONUS, some challenges still remain. 
For instance, the current precipitation classifica-
tion based on volume scan mean vertical profiles 
of ref lectivity and probability of warm rain could 
misclassify some continental convective precipitation 

as tropical rain and result 
in overestimations. On the 
other hand, the MRMS 
radar QPE underestimated 
some very heavy rain rates 
even though the tropical 
rain was correctly identi-
fied. Such underestimation 
appeared to be a result of 
attenuation, vertical varia-
tions of ref lectivity, and/
or unrepresentative R–Z 
relationships. The MRMS 
radar QPE still suffers from 
blockages in the complex 
terrain and may under-
estimate orographically 
enhanced precipitation. 
Many areas of CONUS have 
no radar coverage below 2 
km above the ground level 
(Maddox et al. 2002) and 
the radar QPE in these areas 
is subject to uncertainties 
related to vertical variations 

of reflectivity. Recent studies on the great Colorado 
flood of 2013 (e.g., Friedrich et al. 2016a,b; Gochis 
et al. 2015) also highlighted some of these challenges 
facing the radar QPE in the complex terrain. Further, 
the accuracy of MRMS radar QPE for frozen precipi-
tation remains largely unknown on the hourly scale 
because of a lack of high-quality in situ snow water 
equivalent observations.

Polarimetric radar QPE using R–Z, ZDR (differen-
tial reflectivity) techniques (Giangrande and Ryzhkov 
2008) showed advantages over the current MRMS in 
warm season (not shown) in the central and northern 
plains, where the MRMS has overestimations. How-
ever, R–Z, ZDR techniques were found to still have a 
dependency on precipitation regimes (Cunha et al. 
2013; Ryzhkov et al. 2014) and they are sensitive to ZDR 
calibration biases. The R–specific differential phase 
KDP (e.g., Bringi and Chandrasekar 2001; Ryzhkov 
et al. 2005; Matrosov 2010; Wang and Chandrasekar 
2010; Lim et al. 2013) and R–specific attenuation A 
(e.g., Ryzhkov et al. 2014; Wang et al. 2014) schemes 
were shown to have advantages over R–Z and R–Z, 
ZDR because KDP and A are immune to calibration 
biases and to partial beam blockages. However, the 
R–KDP and R–A schemes cannot be used in regions 
of frozen or mixed phases of hydrometeors and their 
performance in light and/or scattered precipitation is 
not as robust as in widespread heavy rain. Therefore, a 
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synthetic R–A, R–KDP, and R–Z radar QPE is currently 
under development in MRMS. The new synthetic 
dual-polarization radar QPE will apply R–A in areas 
of widespread rain, R–KDP in areas of hail or rain–hail 
mix, and a VPR-corrected R–Z in areas with frozen 
and mixed-phase precipitation. The new scheme 
is planned for implementation in the operational 
MRMS system by the end of 2016 and is expected to 
improve the MRMS radar QPE in the warm season.

To facilitate the rapid and seamless research-to-
operations transfer of advanced radar technologies, 
a real-time research MRMS system is deployed at the 
National Severe Storms Laboratory. The system serves 
as a national test bed for new multiradar multisensor 
QPE technologies and includes a web-based QPE 
verification system (QVS; http://mrms.ou.edu). QVS 
provides a variety of statistical tools and screening 
procedures for viewing and analyzing MRMS products 
and incoming datasets from a few minutes to a couple 
of years old. One focus of the QVS is the QPE products 
verification, including 2D maps of color-coded QPE/
gauge ratios and gauge amount circles, scatterplots, 
and multivariable time series plots for any point in the 
entire MRMS grid. Many users from NWS forecast 
offices, universities, and private sectors have used 
QVS and have provided invaluable feedback based on 
real-time (real world) evaluations that guided MRMS 
development to what it is today and for the future.
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